Keyword: computational communication science
-
Hase, V. & Haim, M. (2024). Can we get rid of bias? Mitigating systematic error in data donation studies through survey design strategies. Computational Communication Research, 6(2). https://dx.doi.org/10.5117/CCR2024.2.2.hase
-
Schwabl, P., Haim, M., & Unkel, J. (2024). Aligning Agent-Based Testing (ABT) with the experimental research paradigm: A literature review and best practices. Journal of Computational Social Science, Advance Online Publication. https://dx.doi.org/10.1007/s42001-024-00283-6
-
Knöpfle, P., Haim, M., & Breuer, J. (2024). Key topic or bare necessity? How research ethics are addressed and discussed in Computational Communication Science. Publizistik, Advance Online Publication. https://dx.doi.org/10.1007/s11616-024-00846-7
-
Haim, M., Hase, V., Schindler, J., Bachl, M., & Domahidi, E. (2023). Editorial to the Special Issue: (Re)Establishing quality criteria for content analysis: A critical perspective on the field's core method. Studies in Communication and Media, 12(4), 277-288. https://dx.doi.org/10.5771/2192-4007-2023-4-277
-
Haim, M. (2023). Computational Communication Science: Eine Einführung. [Computational Communication Science: Introduction.] Wiesbaden: Springer VS. https://link.springer.com/book/10.1007/978-3-658-40171-9.
-
Haim, M., Leiner, D., & Hase, V. (2023). Integrating data donations into online surveys. Medien & Kommunikationswissenschaft, 71(12), 130-137. https://dx.doi.org/10.5771/1615-634X-2023-1-2-130
-
Schwabl, P., Unkel, J., & Haim, M. (2023). Vielfalt bei Google? Vielzahl, Ausgewogenheit und Verschiedenheit wahlbezogener Suchergebnisse. In C. Holtz-Bacha (eds.), Die (Massen-) Medien im Wahlkampf. Die Bundestagswahl 2021 (S. 293-316). Wiesbaden: Springer VS. https://dx.doi.org/10.1007/978-3-658-38967-3_11
-
Haim, M. & Jungblut, M. (2023). How open is communication science? Analyzing open-science principles in the field. Annals of the International Communication Association, 47(3), 338-357. https://dx.doi.org/10.1080/23808985.2023.2201601
-
Jungblut, M. & Haim, M. (2023). Visual gender stereotyping in campaign communication: Evidence on female and male candidate imagery in 28 countries. Communication Research, 50(5), 535-664. https://dx.doi.org/10.1177/00936502211023333
-
Hepp, A., Hohmann, F., Belli, A., Boczek, K., Haim, M., Heft, A., Jünger, J., Jürgens, P., Koenen, E., Nordheim, G. v., Rinsdorf, L., Rothenberger, L., Schatto-Eckrodt, T., & Unkel, J. (2021). Forschungssoftware in der Kommunikations- und Medienwissenschaft: Stand, Herausforderungen und Perspektiven. [Research software in communication and media science: Status quo, challenges, and perspectives.] DGPuK-Positionspapiere. https://www.dgpuk.de/sites/default/files/DGPuK%20Positionspapier%20-%20Forschungssoftware%20in%20der%20Kommunikations-%20und%20Medienwissenschaft_0.pdf.
-
Haim, M. & Jungblut, M. (5/2021). How open is communication science? Analyzing open-science principles in communication science and psychology. Presented at the 71st Annual Conference of the International Communication Association, Denver.
-
Breuer, J. & Haim, M. (4/2021). Reproducibility and replicability in computational social science: Challenges and potential solutions. Presented at the Open Science and Replicability in the Behavioural Social Sciences, Chemnitz.
-
Haim, M. (2021). Gütekriterien und Handlungsempfehlungen für die Entwicklung von Forschungssoftware in der Kommunikations- und Medienwissenschaft. [Quality Criteria and Recommendations for Developing Research Software in Communication Science.] Medien & Kommunikationswissenschaft, 69(1), 65-79. https://dx.doi.org/10.5771/1615-634X-2021-1-65 *